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ABSTRACT: The objective of this work is to develop a general methodology for 
determination of the optimal freshwater inflows into bays and estuaries to balance 
freshwater demands with the harvest of various types of estuarine resources. The 
methodology is based upon solving a large-scale nonlinear programming problem 
formulated in an optimal-control framework. Constraints of the optimization prob- 
lem include regression equations for harvest of the various species that express 
fishery harvest as a function of the quantity of freshwater inflow. The stochastic 
element of the problem (i.e. the uncertainty associated with the regression equations 
for harvest) is considered by expressing constraints in a chance-constrained for- 
mulation. A nonlinear programming optimizer is interfaced with a hydrodynamic 
transport model to implicitly solve the hydrodynamic-salinity constraint equations 
for salinity levels. An augmented Lagrangian method is introduced to incorporate 
the salinity constraints into the objective so that the problem size for the optimizer 
is significantly reduced. A computer model OPTFLOW has been developed by 
interfacing a simulator for the hydrodynamic-salinity (HYD-SAL) with a nonlinear 
optimizer (GRG2) to apply the methodology by the present writers in an accom- 
panying companion paper. An efficient approximation scheme is developed for 
evaluation of the objective function and its reduced gradient to reduce the com- 
putational effort dramatically. The new methodology can provide a very useful tool 
for decision makers to quantitatively analyze various water-management strategies. 

PROBLEM IDENTIFICATION 

Freshwater  is one  of  the  mos t  p rec ious  na tura l  resources  in m a n y  areas  
of  the Un i t ed  States ,  especia l ly  the  Gu l f  Coas t  states and Cal i fornia ,  and 
e lsewhere  in the world .  F r e shwa te r  inf low n e e d e d  to main ta in  the  hea l thy  
ecological  condi t ions  of  coastal  es tuar ies  must  c o m p e t e  with the  demands  
ups t ream such as munic ipa l ,  industr ia l ,  and agr icul tural  users.  Es tuar ies  
provide  areas of  nursery  habi ta ts  for  juven i l e  forms of  mar ine  species,  for  
sport and commerc i a l  f ishing, and for  o t h e r  r ec rea t iona l  activities.  T h e  
provision of  sufficient  f r e shwate r  inflows to es tuar ies  is a vi tal  fac tor  in 
maintaining es tuar ine  product iv i ty .  T h e  des i red  approach  to wa te r - resources  
managemen t  is to op t imize  f low into  the  es tuary  (by min imiz ing  the  total  
vo lume of flow, or  by maximiz ing  the  divers ions  and s torage  within  l imits 
of  water  rights and capaci ty,  or  bo th) ,  whi le  p rese rv ing  an accep tab le  habi ta t  
in specific regions  of  the  es tuary  to a c c o m m o d a t e  the  r e q u i r e m e n t s  of  key  
organisms. Salinity is an index that  has b e e n  well  es tabl ished to indicate  
ecological  condi t ions  in an es tuary  because  it measures  the  re la t ive  pro-  
port ion of  f reshwater  to seawater .  Sal ini ty no t  only ref lects  the  rat io  of  
f reshwater  to seawate r  but  also p rov ides  o the r  in fo rma t ion  such as nu t r ien t  
supply, sed iment ,  and c o m p o n e n t s  of  the  food  web.  
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A key element in developing an optimization problem is the mathematical 
relation between salinity in the estuary and flow, s = F(Q). Usually the 
relation is based upon statistical association, i.e. a regression form estab- 
lished from field data. The Texas Water Development Board (TWDB) 
("Hydrological" 1978; "Mathematical" 1979; "Lavaca" 1980)has made par- 
ticularly extensive application of this approach in establishing freshwater 
inflow requirements, as a part of its bays and estauries program. The sta- 
tistical regression s = F(Q) proves to be extremely noisy because of the 
variability in salinity. In the case of the Texas bays, nearly the entire possible 
range of salinity values can be found in the historical field data for any given 
value of concurrent inflow. The reasons for this are threefold. First, the 
value of salinity in a given region of the bay is dependent on several other 
factors in addition to freshwater inflow, notably the various hydrodynamic 
circulation processes including tides, responses of the bay to meteorological 
forcing, and the effect of density currents particularly operating in con- 
junction with deep-draft ship channels. Second, the time scale of response 
of salinity is typically much longer than the variability of freshwater inflow. 
The value of salinity is the integrated response to perhaps several months 
of the freshwater inflow "signal." Salinity is also a function of spatial location 
within an estuary. Generally, salinity is low near the river inlet (upper 
estuary) and high near the ocean outlet (lagoonal arm of the estuary). The 
regressional function s = F(Q), at best, only reflects the averaged salinity 
conditions. 

It should also be noted that the optimization problem is in fact time 
varying, primarily because the salinity requirements of key organisms in the 
estuary will vary with season through the year, depending upon the life 
stage of the organism and its presence or absence within the estuary. (Many 
of the important commercial species are anadromous, migrating into or out 
of the estuary.) The salinity limits for a specific organism are based on the 
statistical association between the presence of that organism in the estuary 
(as reflected in catch data or harvest data) and salinity, or on the physio- 
logical dependence on salinity as revealed in laboratory studies. Thus far, 
the optimization problem has only been treated on a steady-state basis 
(Martin 1987; Bao et al. 1989; Tung et al. 1990). Accommodation of the 
seasonal variation in salinity requirement was made by the TWDB by sub- 
dividing the year into several seasons and solving the steady-state problem 
separately for each season. 

The essential weakness in the preceding formulation is that the salinity 
regression equations are too simple to represent the complicated hydro- 
dynamic transport physical process coupling salinity, inflows, and other 
factors. The present paper reformulates the problem, replacing the statistical 
regression s = F(Q) with a mathematical model of hydrodynamic transport, 
relating salinity at a given point in the estuary to a time-varying boundary 
condition of riverine inflow. Such an approach has the following advantages: 

1. More accurate and self-consistent definition of salinity as a function 
of flow, enabling greater precision in the optimization results. 

2. Explicit incorporation of physical processes other than freshwater in- 
flow affecting salinity in the real system, including tides, meteorology, and 
internal circulations. 

3. The ability to accommodate time variation in the response of salinity 
to freshwater inflow, so as to readily generalize to the full time-varying 
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problem (although the optimization problem can also be solved in a steady- 
state framework with steady inflows). 

4. The ability to accommodate generalization to full time variation in 
upstream water demands, including seasonality of irrigation and long-term 
demographic changes. 

5. The ability to consider either averaged inflow, prespecified scenarios 
of inflow, or long-term simulations using real hydrological data. 

In some estuaries, a direct measure of organism abundance is available 
in the data on commercial fishery landings taken from the estuary. This 
"harvest" data can be employed as an index of populations of key organisms 
and analyzed statistically to establish its dependence on freshwater inflow, 
I lk  = f ( Q ) .  While this might appear superior to the indirect salinity-index 
approach, the causal connection between flow and harvest may be obscured 
by unmeasureable parameters of the fishing process such as effort, selec- 
tivity, and skill, and may be corrupted by poor reporting or the difference 
between locality of landing (i.e. port) and locality of catch, to say nothing 
of other environmental variables unrelated to inflow. This regression there- 
fore tends to be noisy and statistically uncertain. On the other hand, it is 
directly pertinent to the problem, and when the data are available, should 
be accommodated within the optimization problem, either as an objective 
function or as a constraint. To account for the uncertainty of the regression 
these equations can be rewritten as chance constraints (see Appendix I). 
Thus, the stochastic constraints are transformed into probabilistic statements 
to indicate the probability that the constraint will be satisfied within a spec- 
ified reliability level. 

Overview 
The overall optimization model can be stated in the following general 

nonlinear programming format using an objective function to minimize 
freshwater inflows or to maximize fishery harvest: 

Optimize f(Q, s, H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (1) 

subject to the following constraints: 
First, hydrodynamic transport equations that relate salinity s (vector in 

spatial and temporal domains) to the freshwater inflow Q 

G(Q, s) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2) 

where Q = a vector of the independent variable (control variable) as a 
function of time; and s = a vector of the dependent variable (state variable) 
as a function of time and location. 

Second, regression equations that relate inflow to fish harvest 

h(Q, H) -- 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 

where H = a vector of the fish harvest for different species. 
Third, constraints that define limitations on freshwater inflows due to 

upstream demands and water uses, and historical ranges 

Q -< Q - Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (4) 

where Q and the limitations are defined in the general terms so that they 
can be interpreted as monthly, seasonal, and annual flows. The marsh in- 
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undation requirements are also included in this expression, which are ba- 
sically lower bounds on flows during certain time periods. 

And fourth, constraints that define limitations on salinity 

s -< s <_ ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (5) 

The problem posed is a discrete time optimal control problem in which 
the constraints that relate the state variables (salinities) to the control var- 
iables (freshwater inflows) are solved implicitly by the simulator, hydro- 
dynamic-salinity (HYD-SAL). For each iteration in the process of the op- 
timization, the optimizer computes the new values of control variables and 
passes that information to the simulator to update the corresponding state 
variables. A reduced optimization problem is then formed with a smaller 
number of decision variables and constraints. The control variables are the 
freshwater inflows as a function of time. The state variables are the salinities 
as a function of time and location in the bay and estuary. During each 
iteration of the optimizer, a set of control or decision variables, the fresh- 
water inflows for each time period, are sent to the simulator, as shown in 
Fig. 1. The purpose of the estuarine hydrodynamic transport model is to 
simulate the flow circulation in the bay system and to be able to compute 
the spatial distribution of salinity in the bay for the time period of interest 
for given freshwater inflows and other boundary conditions. The hydro- 
dynamic transport model then solves for the salinities for each location in 
the bay and estuary at each time period. Basically, the state variables (sa- 
linities) and the control variables (freshwater inflows) are related through 
the hydrodynamic transport model. In essence, the simulator equations are 
used to express the states in terms of the controls yielding a much smaller 
nonlinear optimization problem. 

O P T I M I Z A T I O N  M O D E L  

(GRG2) 

m 

Decision Variables: 

F r e s h w a t e r  

Inf lows ,  Q t  

S I M U L A T O R  

H y d r o d y n a m i c  
T r a n s p o r t  M o d e l  

State Variables: 

3alinifies, s t, x 

FIG. 1. Optimizer-Simulator interface 
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Hydrodynamic Transport Simulator for Estuaries 
The essence of the present paper is to develop a general methodology 

for the estuarine freshwater resources management so that for discussion 
purposes the hydrodynamic transport model needed for simulation of tem- 
poral and spatial variation of salinity is not restricted to a particular model. 
The selection of an appropriate model depends on a number of factors such 
as efficiency, accuracy, complexity, and availability of the model. Even if 
a desired hydrodynamic transport model has been chosen and applied in 
the simulation, a better model can always be used to replace it in the future 
as more efficient models are developed. The formulation of hydrodynamic 
and transport-governing equations varies slightly for each model depending 
on the various assumptions and approximations introduced. The model used 
for discussion purposes in the application in this research is a two-dimen- 
sional, finite-difference model referred to as HYD-SAL ("Lavaca" 1980). 
Such a model is used as an example for the formulation of governing equa- 
tions and their finite-differencing approximations (Fig. 2). 

One of the key elements of the methodology is the determination of 
salinity levels in the estuary defined in terms of a particular sequence of 
inflows. The hydrodynamic model embedded within this procedure should 
satisfy the following desired criteria. 

�9 The model should be capable of representing an estuarine system 
with complex circulation, to offer a fair level of complexity in the 
salinity-inflow relation and therefore in the optimization method- 
ology 

�9 The model should be capable of exhibiting a significantly filtered 
response to time variations in freshwater inflow, including time lags 
and inertia, to differentiate the salinity-inflow association from the 
simple regression forms used in past studies 

�9 The model should be representative of a real estuarine system, so 
as to allow demonstration of the methodology in a case-study format 

�9 The model should facilitate generalization to a more sophisticated 
high-resolution estuarine model for detailed applications of the op- 
timization methodology 

In addition to the general requirements for an estuarine hydrodynamic 
model, the following criteria are considered, in the following order of prior- 
ity, when selecting a simulation model: 

1. The hydrodynamic transport model needs to be called by the optimizer 
so frequently that the most restrictive requirement for a suitable simulatioL 
model is the speed of execution of the code. 

2. The model should be capable of representing an estuarine system with 
complex circulation, temporal, and spatial salinity variability. 

3. The model should be capable of simulating long-term salinity values 
such as monthly averaged salinity in the bay system. 

The preceding requirements can be met for most applications using a 
two-dimensional horizontal depth-averaged tidal hydrodynamic transport 
model, implemented for one of the Texas bays. The computational model 
to be employed is one of several models currently available. These include 
the finite-difference models developed in the Galveston Bay project (Ward 
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FIG. 2. Relationship between Tidal Hydrodynamic and Salinity Models 

and Espey 1971), the finite-difference models developed by the Texas Water 
Development Board for the Texas bays ("Lavaca" 1980), the finite-differ- 
ence model developed by the Rand Corp. (Leendertse 1967a, b; Ward and 
Espey 1971), and the quasi-two-dimensional finite-difference dynamic es- 
tuary model (DEM) developed for the Sabine Lake estuarine system (Brandes 
et al. 1975). The available two-dimensional (2D) finite-element models tested 
for selection are FESWMS-2DH (Froehich 1989), GEVIS (Lynch and Gray 
1979), and TXBLEND (Matsumoto 1992). 

The governing equations for the 2D horizontal model are the vertical- 
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averaged equations of momen tum,  continuity, and salinity mass budget: the 
momentum equation in x-direction 

'gqx Oh 
f~qy = - g d - ~ y  - fqqx  + Xw . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6) 

Ot 

the momentum equation in y-direction 

,gqy Oh 
- tIqx = - g d - ~ y  - fqqy + Y w  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7) 

,9---t- 

the continuity equation 

'gqx Oqy Oh 
- -  + - -  + - -  = r -  e ( 8 )  
,gx ,gy Ot 

and the conservation (transport) equation 

,gs ,9( ,9( w ) ,9 o ,gs 
- -  -1-  -1-  - -  - -  E x - -  - t -  - -  E y  - -  . . . . . . . . . . . . . . . . . . . . . .  (9) 
,gt ,gx ,gy ,gx Ox Oy Oy 

where t = time; x and y = horizontal Cartesian coordinates; qx and qy = 

depth-averaged flow components  in the x- and y-directions per  unit width; 
1~ -- Coriolis paramete r  equal to 2,o sin +; ~o = angular rotation of the 
earth; + = latitude; g = gravitational acceleration; h = water  surface 
elevation; d = water  depth equal to h - z; z = bot tom elevation; f = 
bottom friction term from the Manning equation; q -- flow per  unit width 
equal to X/q~ + q~; Xw = wind stress per  unit density of  water  in the 
x-direction equal to K V $  cos 0; Yw = wind stress per unit denity of water  
in y-direction equal to K V $  sin 0; K = a wind stress coefficient; Vw = wind 
velocity at 10 m above the water  surface; 0 = wind direction with respect 
to the x-axis; r = rainfall intensity; e = evaporat ion rate; U and V = net 
velocities over a tidal cycle; s = vertically-averaged salinity; and Ex, Ey = 
horizontal dispersion coefficients in the x- and y-directions, respectively. 

In the momentum equations,  the advective terms are neglected and the 
water density is treated as a constant. The assumption of constant density 
considerably simplifies the governing equations by decoupling salinity from 
the momentum equations, but at the expense of neglecting salinity-induced 
accelerations. The remaining terms in the momen tum equations are the 
inertia, the Coriolis acceleration, gravity, friction, and wind stress. The 
precipitation and evaporat ion terms are also added in the continuity equa- 
tion for the mass conservation. The transport  equation is a linear second- 
order partial differential equation for convective-dispersion. 

Boundary conditions are imposed around the periphery of the estuary 
including water-land boundaries,  partial internal boundaries (e.g. sub- 
merged reefs for hydrodynamic equations only), freshwater flows (e.g. river 
flows, diversions, and return flows), and open saltwater ocean boundaries 
(tidal excitation). For salinity, s -- so imposed at the ocean boundaries,  a 
yon Neumann condition (zero flux) at land boundaries,  and an open-bound- 
ary condition at the inflow points. These boundary conditions can be a 
function of time. 

The hydrodynamic equations are nonlinear first-order partial differential 
equations to solve for three unknowns: flow fluxes in the x- and y-directions 
and water-surface elevation (qx, qy, and h). A fully explicit method is used 
for solving the hydrodynamic equations in H Y D - S A L  that is a t ime-centered 
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difference scheme involving time stepping of the "leap frog" type for com- 
putations of flows and water surface elevations. Fig. 2 shows the relationship 
between the tidal hydrodynamic model and salinity model. 

The initial hydrodynamics can be either set as zero (default in model) or 
read from input data if they are known. Since the simulator is carried out 
for an entire year, simulation is only the first month the hydrodynamics are 
set as default values and the antecedant conditions are used for the simu- 
lation of the rest of the months of the year. Similarly, the initial salinity 
conditions can be either set as a uniform known distribution. However, 
depending on the availability of hydrodynamic and salinity data and the 
purpose of application, the salinity transport model can be steady-state or 
unsteady-state. For instance, in the application of this model (Bao and Mays 
1994), a two-cycle tidal data, which is averaged from one of month data to 
represent the tidal condition for that month, is used in the hydrodynamic 
simulations. Accordingly, the default salinity (uniform value) is used for 
the first month and the transport model (SAL) is run until steady-state 
conditions are reached. The final salinity values are the solutions of the 
salinities in that month and used as initial salinities for simulation of the 
next month. 

Reduced Problem 
For illustration purposes, the objective to minimize the total annual fresh- 

water inflow, is selected to demonstrate the formulation of the optimization 
problem and solution procedure. The independent (decision) variables are 
the monthly averaged freshwater inflows from each river connected to the 
bay system. Thus, even in the original general format the objective function 
(5) is a function of the flow vector Q only. The problem formulated next, 
however, is still defined as the "reduced" problem for the reasons that: 
First, it can be viewed as the coefficients associated with a (salinity vector) 
terms in the objective function are set to zero; second, the size of the 
optimization problem is dramatically reduced because the G constraints in 
(2) are solved implicitly by the hydrodynamic transport simulator; and third, 
this notation makes it more convenient for the description of model for- 
mulation and structure hereafter. The reduced problem consists of the "re- 
duced" objective function 

minimize f[Q, s(Q)] = min F(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (10) 

subject to harvest constraints (3), bounds (4), and salinity bounds (5). 

Solution Procedure 
To force satisfaction of the salinity bound constraints in the optimizer, 

these bounds on the state variables (salinities) are incorporated into the 
objective function using the augmented Lagrangian algorithm. Such an ap- 
proach not only forces the state bounds to be satisfied, but also reduces the 
number of constraints. Since only inequality bound-type salinity constraints 
need to be incorporated, the objective function with the augmented La- 
grangian function is expressed as 

minL[s(Q) ,Q,  Ix,~] = F ( Q )  + ~ ' ~  min O, c i=  ~ i  _ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (11) 

where i = index for each bound constraint; (ri and ~i = penalty weights 

206 

Downloaded 22 Feb 2010 to 205.225.207.97. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



and Lagrangian multipliers, respectively, for the ith bound; and ci = vio- 
lation of the bounds either above or below the rninimum defined as 

ci = min(st - s_i, si - s i)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) 

The reduced optimization problem with augmented Lagrangian terms for 
minimizing freshwater inflows is stated with the objective (11) is as follows: 

minimize L[s(Q), Q, ~r, It] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (13) 

subject to 

h[Q, s(Q), H] = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 

and 

_Q -< Q <- Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (15) 

which are, respectively, the constraints on harvest and the bounds on the 
freshwater inflows. The solution to this reduced problem is a two-step pro- 
cedure. The overall problem is 

m i n l m i n L [ s ( Q ) ' Q ' ~ t ' t r ] } , , . ~  [ . Q e Q s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (16) 

where Q, = range of feasible freshwater inflows as given by (15). For given 
values of vectors ~ and Ix, the reduced problem, (13), (14) and (15), are 
then solved using a nonlinear optimizer, such as GRG2 (Lasdon and Waren 
1989), which is based upon the generalized reduced gradient method. The 
outer problem is iterated by updating the values of a and for the next solution 
run of the inner problem. The overall optimization is attained when ~ and 
It both converge. 

The updating formula used for p. is: 

i~(k+l) = IX}g) _ eric i if ci < I~i (17a) 
i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

O"  i 

Ix}e+1) = 0 otherwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (17b) 

where k = number of the current iteration. The value of ~g is adjusted once 
during early iterations and then kept constant. 

The overall solution procedure is further illustrated through the flowchart 
in Fig. 3. There are two loops in this procedure, with the outer loop de- 
termining the Lagrangian multipliers (dual variables) and penalty weights. 
The inner loop solves the reduced augmented Lagrangian problem using 
the optimizer, GRG2, whose dual variables and penalty weights are fixed 
at the values determined by the outer loop. Once an inner loop is finished, 
the convergence criterion is checked by looking at the size of the salinity- 
bound infeasibility. If it is small enough, the procedure terminates; other- 
wise, the procedure returns to the outer loop and updates the dual variables 
and penalty weights and then goes to the inner loop and solves the new 
reduced augmented Lagrangian again with the updated tx and cr from the 
outer loop. This process continues until a solution of the overall problem 
is found. Obviously there is no guarantee of convergence to a global opti- 
mum solution; however, with the use of initial trial solutions and engineering 
judgement optimal solutions can be found. 
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Initialize the Inflow, Penalty Weights 
and Lagrange Multipliers 

(Inner Loop) 

Optimization Model ] 

[ Hydrodynamic Transport Model ] 

Optimal Solution [ 
for Reduced P r o b l ~  

~ : B ~ U ~ r ~ g : o v e r a l l  Optimal ~ ? d ~  
Solution Reached ~ o  

(Outer Loop) 
Update Penalty Weights 

and/or Lagrange Multipliers 

U3 

0J 

FIG. 3. Overall Solution Procedure 

Computation of Reduced Gradients of AL Problem 
The augmented Lagrangian (AL) function, (11), is a function of flow Q, 

salinity s(Q), and Lagrangian parameters cr and ~, which is also expressed 
as follows: 
min L[s(Q), Q, 1~, ~r] = f(Q) + ~ li{ci[s(Q)], ~/, ~ri} . . . . . . . . . . . .  (18) 

i 

where 
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1 
E li(s, I tl', o') = E = - ['bici(si) q- 2 (~i[ci(s)] 2, if ci(si) < ~L~ . . ,  (19a) 

i i O'i 

li(s, ~, w) = ~] - 1 Ix,,2 g 
i 7 2 cr i 

if c~(s~) >- ~ . . . . . . . . . . . . . . . . . . .  (19b) 
O" i 

and the salinity violation vector c, is a function of salinity s, and the salinity 
bounds (12). From (12), the salinity violation term G(s) = ci(si) or ci(s) = 
ci[s;(Q)]. The gradients of the augmented Lagrangian function can be derived 
by applying the chain rule: 

OL _ Of + X' O10c i Osi 
OQ OQ ~ oc~ Os~ oQ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (20) 

where (O1/Oc,) = a function of cr and Ix. Hence, (01/0c,) is constant for the 
inner optimization problem. From (12), Oci/Osi is either 1 or - 1. Thus, the 
key component for the computation of the (reduced) gradients of the aug- 
mented Lagrangian is the partial derivatives of the salinity with respect to 
the monthly flow, Os/OQ. 

The spatial and temporal salinities in the bay system are computed by 
solving the simulator. The freshwater inflows Q are part of the boundary 
conditions (water-land boundaries) for the hydrodynamic model and the 
salinity values in the river inlets are part of the boundary conditions for the 
transport model (source concentration boundaries). To compute the matrix 
os/OQ analytically, a new set of simulator equations need to be derived and 
the analytical solution may be very difficult, if it is not impossible. In this 
research, the computation of os/OQ is carried out by finite-difference meth- 
ods either the forward differencing or the central differencing. More spe- 
cifically, os/OQ is computed by perturbation of Q and running the hydro- 
dynamic transport simulator repeatedly. 

The computation of the reduced gradient is done by the forward difference 
or the central difference method through calling of the hydrodynamic trans- 
port model to simulate the temporal and spatial salinity variability in the 
nonlinear optimizer. To update the objective function, 12 calls to the hy- 
drodynamic transport simulator are required with each simulating for a 
period of one month. 

Theoretically, for an estuary with two major river systems if the central 
difference is used, it requires 24 x 12 x 2 = 576 calls of the hydrodynamic 
transport simulator to update the AL reduced gradients, where 24 is the 
number of decision variables (monthly river flows); 12 is the number of 
months to be simulated for each variable (Q) to be perturbed to obtain OL/ 
OQ, which is on an annual basis, (20), and 2 results from the fact that the 
central difference requires monthly flows to be perturbed at both sides for 
computation of the AL reduced gradients. Although the number estimated 
for the simulation requirement can be reduced by 50% by running the 
simulation only for the remaining months, 288 calls of the simulator are still 
extremely expensive for only updating the AL gradients once. 

The simulation results using HYD-SAL indicate that the impact of a 
monthly flow perturbation in months on the salinities in the bay system for 
the remaining months (t = t + 1, t + 2 , . . .  12) is so small that might be 
mainly affected due to the numerical computation errors (less than 10-8). 
Therefore the effect of the flow perturbation from previous months is con- 
sidered as negligible. Hence. the number of hydrodynamic transport sim- 
ulation calls for updating the AL reduced gradient matrix can be reduced 
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from 576 to 48 for the central-difference method by not simulating the 
salinity in the bay for the remaining months. 

Other test run results indicate that the difference of the computed AL 
reduced gradients between the forward and the central difference methods 
is insignificant. The forward difference method is sufficient for the purposes 
of the AL reduced gradient computations. Thus the number of simulation 
calls to the hydrodynamic transport model can be further reduced to 24. 

The test results indicate that over 95% of the CPU time for the model 
run is required in the hydrodynamic transport model runs for flow and 
salinity simulations. Although this dramatical reduction in the number of 
hydrodynamic transport simulations (from 576 to 24) will save the CPU 
time significantly, it is still an extremely intensive computational effort for 
the entire model. The inner optimization model of GRG2 requires 7-60 
iterations before the optimal solution is found for the given augmented 
Lagrangian parameters (initial multiplier, initial penalty, and penalty mul- 
tiplier). Each iteration may require one or more updates of the reduced 
gradient and many times for computing the objective functions. The number 
of the simulation calls is then multiplied by the number of outerloop iter- 
ations for updating the augmented Lagrangian parameters and returns to 
the inner optimizer. 

Gradient Approximation Scheme 
The frequent number of simulations requires high CPU times so that 

innovative modification is needed to reduce the CPU time in simulation. 
The approximation scheme for computing the AL gradients, presented here, 
is based on the premise that the change of the salinity derivatives with respect 
to flow is relatively small compared with the flow changes within a certain 
flow range. In other words, for a given set of flows, the higher order of 
salinity derivatives (second partial derivatives) are negligible. This assump- 
tion is not proven in theory, but the fact that the linearity in the formed 
transport PDE (second order, though) and the fully explicit time-centered 
differencing for the nonlinear hydrodynamic PDE's might suggest that the 
assumption be a close guess. To verify this assumption, a simulation model 
was developed to incorporate the hydrodynamic transport model and the 
finite-difference method for computation of the AL objective gradients. 
The simulation results show that with change of flow (AQ) of 61,675,000 
m 3 (50,000 acre-ft), the corresponding change ~s/OQ usually occurs in the 
4th or 5th digits. Although the numerical values obtained from the simu- 
lation runs are case-specific, it is reasonable to state that the change of the 
salinity with respect to flow (os/OQ) is relatively small compared with the 
change of inflows. 

Fig. 4 is a flowchart of the procedure for the approximation scheme for 
computing the AL gradients and the objective functions. By the finite- 
difference method, the gradients of the AL objective function Minimize 
L[s(Q), Q, ~r, I~] (18), with respect to monthly inflows, Q(Q = {Q1, Q2, 
�9 . . Q,}) is computed by the forward-difference method 

~L _ Llom+~e~ - LIQm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (21) 
OQm AQm 

for variable element Qm (m = 1, 2, . . . n). The simulator is called to 
compute the AL terms in the objective, Zi li{ci[si(Q)], p~i, or/}, (18) by sim- 
ulating the salinities and computing the salinity violation terms. The re- 
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s u l t a n t  J a c o b i a n  m a t r i x  o f  Os/OQ a n d  t h e  v e c t o r s  o f  s a n d  Q a r e  s t o r e d  as  
As /AQ,  s ~ a n d  QO. 

T h e  a p p r o x i m a t i o n  s c h e m e  c a n  b e  d e s c r i b e d  as  f o l l o w s .  T o  c o m p u t e  t h e  
n e w  A L  g r a d i e n t s  f o r  f l ows  o f  Q ,  t h e  c h a n g e s  o f  f l o w  f r o m  p r e v i o u s  e v a l -  
u a t i o n  o f  QO is s i m p l y  t h e  d i f f e r e n c e  o f  t h e  t w o  as  
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AQ = Q O _  Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (22)  

The associated salinities s are computed  by 

s, = s ~ + AQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (23) 

and the updated objective funct ion is 

nput Control Data : salinity bounds, convergence criteria, initial Lagrangian "~ 
multipliers and penalty weights, outerloop iteration limit, I 

Constraint Data : harvest regression eqs, desired reliabilites, flow bounds I 
HYD-SAL Data : bathymetry, tide, wind, evaporation, precipitation, [ 

salinity sources, time steps, salinity test stations d 

Form New Subproblem for given it, 
LAVSUB 

iiiiii~il 

i#ii 

Update p., 

Calculate the reduced gradients, determine step size in 
one dimensional search to update F and Q 

GRGSUB 

iiiiiiiiiiii!; '~i!iiiiiiiiiii!#iiiiiiiiiii#iiiiii]iiii!iiiiiiiiii!ii!iiiiii#iiiiii!iii!iiii: :ii"~g~"~"#iiiiiiii#iiiiii i:i:Q:iiiiiiiiiiiiii!iL: 
iiiiiiiii~ii~:iiiiiiii#~iiiiiiiii~iiiiii~iiiiiiii~iiiiiiiii~i~iiiiii?~i~i~ii!~i~i~i~i~!!~ i ............................ iiii!!!!iii~ii!i~i!~!~!....~ii~iiii!!!!iii~i~ii 
iiiiiiiiiiiiiiiiiiili!iiiiiiiii!iiiiiiiiiii!iiii!iiiiii!iiiiiiii!iiiii!ii] Computeconstratintsand Ii 

iiiiiiiii!iiiiiiiiiiiili!i!!!ili)iiii!iiiiili!iiiii;liiiii)!i!iiiiiii!i!i:![:ii i A ~ G C O M P  f i :?~:i:i:i:~!!! iiiii!iiiiii!ii!i!iiiiiiiiiiiiiiiiiiili!iil ilililiiiiiiiliiiii!l ............... : 
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FIG. 5. Flowchart of OPTFLOW 
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L[s(Q), Q, It, ~] = f(Q) + ~ 1,{ci[si(Q)], I~i, ~,} . . . . . . . . . . . . . .  (24a) 
i 

L[s(Q), Q, It, ~] = ~ Qm + ~ li[ci(si), I~i, cry] . . . . . . . . . . . . . . . .  (24b) 
m i 

The gradients of the AL objective with respect to the monthly flow are 
approximated by 

OL Of + 
OQ OQ 

where ~ denotes that the derivative of OL/OQ, (20), is a function of the 
Jacobian matrix of salinities As/AQ. Once the computation of OL/OQ is 
completed, the s ~ and QO values are updated using s and Q from the current 
iteration. A separate computer program was developed to evaluate this 
approximation scheme for computing the AL objective gradients. The test 
results indicate that the approximation scheme is extremely efficient with 
reasonably good accuracy. 

Computer Code 
Bao (1992) developed a computer code, that interfaces GRG2 and HYD- 

SAL for determining the optimal freshwater inflows to bays and estuaries. 
A computer model OPTFLOW (optimal flow estuarine model) was devel- 
oped for application of the general methodology for estuarine water-re- 
sources management purposes. OPTFLOW is a modular set of computer 
programs that consists of five major components: (1) Implementation of 
the AL algorithm and the approximation scheme for objective reduced 
gradients; (2) inner optimization module with chance-constrained formu- 
lation for fishery harvest constraints; (3) a nonlinear optimizer GRGSUB, 
which is the standard version of GRG2 with capability of interfacing with 
other modules; (4) a hydrodynamic module MATSUB, which is a modified 
version of HYD for simulation of estuarine flows; and (5) a transport mod- 
ule, SALSUB, which is a modified version of SAL for simulating the salinity 
distribution in the estuary for given flow conditions. The overall structure 
of OPTFLOW is illustrated in the flowchart (Fig. 5), which consists of 
several major components. 

SUMMARY 

Estuarine management is defined to maintain the ecologically sound es- 
tuarine condition by controlling the amount of freshwater inflow to the 
estuary. In the past two decades, various hydrodynamic and transport models 
have been developed and applied to bays and estuaries. Only two previous 
estuarine management optimization models have been developed (Martin 
1987 and Tung et al. 1990). The major drawback in the previous models is 
using simple regression equations relating freshwater inflow to the salinity 
as deterministic constraints (Martin 1987) or as chance constraints (Tung et 
al. 1990). 

A general methodology is presented to solve the problems in previous 
models by replacement of the salinity equations with a two-dimensional 
hydrodynamic transport model to simulate circulation and temporal and 
spatial variability of salinity in the bay system. The hydrodynamic transport 
model HYD-SAL is based on a set of nonlinear partial differential equations 
for the momentum equations in the x- and y-directions, continuity equation, 
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and convective-dispersion of mass balance for transport. Since these equa- 
tions have to be solved numerically by discretizing in the space and time 
domains, the resultant optimization problem would be far too large to be 
solved. 

The problem is reduced first by using the simulator to implicitly solve the 
derived physical equations and further by introducing an augmented La- 
grangian method to consider the salinity constraints. The resulting reduced 
problem is solved by the generalized reduced gradient method. The hydro- 
dynamic transport simulator is modified as submodules to be linked to the 
nonlinear optimizer to implicitly solve constraint equations for salinity lev- 
els. 

The solution algorithm for this general methodology can be briefly sum- 
marized in two steps. The first step (outerloop iteration) is to determine 
the augmented Lagrangian (AL) parameters (multiplier and penalty) for 
each salinity constraint (representing temporal and spatial variability). The 
second step (inner loop iteration) consists of an optimizer and hydrodynamic 
transport simulator to solve for the optimum for the given AL parameters. 
If the salinity convergence criteria are not met, the program goes back to 
the first step to update the AL parameters, then starts the inner loop it- 
eration again with the updated AL parameters. The two-step (iterations) 
are repeated until a local optimum is found with all salinity constraints 
satisfied within the convergence criterion. 

A computer model OPTFLOW is developed in the study for application 
of the general methodology to solve estuarine management problems. In 
addition to the implementation of the augmented Lagrangian algorithm, 
the chance-constrained formulation is solved by the OPTFLOW model, 
which includes an existing hydrodynamic model (HYD), a transport model 
(SAL), and a nonlinear optimizer (GRG2). OPTFLOW has been applied 
to the Lavaca-Tres Palacios Estuary in Texas as described in the companion 
paper, Bao and Mays (1994). 
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APPENDIX I. CHANCE-CONSTRAINT FORMULATION FOR 
HARVEST EQUATION 

The regression equations in the optimization model for harvest are subject 
to uncertainty due to the variance in the basic data. This uncertainty arises 
because for the population of observations associated with the sampling 
process, there is a probability distribution of salinity of commercial harvest 
for each level of freshwater inflow. The basic application of chance con- 
straints in stochastic programming is to account for the uncertainty of the 
regression due to random variation in the regression variables by formulating 
the corresponding constraints into probabilistic form and then transforming 
them into their deterministic equivalents. 

In the problem formulation, these stochastic constraints are transformed 
into probabilistic statements so that each chance constraint states the prob- 
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ability that the constraint will be satisfied with a specified reliability level. 
The harvest constraint (7) can be rewritten in chance-constraint form as 

er (Hk  >-- H )  >-- Pk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (26) 

where the harvest = Hk is a random variable due to the uncertainty induced 
by the regression equation (11); and Pk = desired or required reliability. 
The chance constraint (26) must be t ransformed into an equivalent deter- 
ministic form in order to implement  the optimization algorithm. 

The harvest regression equations are either multiple linear models or 
transformed linear models after logarithmic transformation of Hk and QSjm 
depending upon the species of fish. The commercial  fish harvest  can be 
written in a linear or nonlinear form depending upon the species using the 
regression equations 

Hk = (QS)Ti~nk, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (27) 

or 

ln(nk) = [ln(QS)j]TI3H~, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (28) 

The harvest chance constraint (26) is determined using (27) or (28), re- 
spectively, 

Pr[(QS)T~H.  >- H-k] >-- e k  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (29) 

or 

er{[ln(QS)j]r~nk, >- ln(_Hk)} --> Pk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (30) 

The deterministic form of (29) and (30) are, respectively 

tn .... 1-ekfrsX/(QSj)r[(QSDj)r(QSD~)]-I(QS)/  + 1 

+ (QS)~I~n~j -> Hk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (31) 

and 

t, .... l_p~6",,jX/[ln(QS)j]r{[ln(QSDj-)]r[ln(QSDi)]}-l[ln(QS)j] + 1 

+ ln(QSj)rl~nk, -> ln(H~) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (32) 

where tn_,, 1 -Pk = quantile of t r andom variable with n - v degrees of free- 
dom and tiae probabili ty of  1 - Pk; 6"n, = estimated standard error asso- 
ciated with the harvest regression equations; QSDj = a matrix of the ob- 
served data of seasonal freshwater inflow used for the harvest  regression 
equations; and In(QSD~) = a matrix in which each element is the logarithmic 
transform of the corresponding one in QSDj. 

The chance-constrained model  for various alternatives is obtained by 
using the associated objective along with constraints (31) and (32), replacing 
the respective regression relationships. 

APPENDIXII. REFERENCES 

Bao, Y. X. (1992). "Methodology for determining the optimal freshwater inflows 
into bays and estuaries," PhD dissertation, Dept. of Civ. Engrg., Univ. of Texas 
at Austin, Austin, Tex. 

215 

Downloaded 22 Feb 2010 to 205.225.207.97. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



Bao, Y. X., Tung, Y. K., Mays, L. W., and Ward, G. H. Jr. (1989). "Analysis of 
the effect of freshwater inflows on estuary fishery resources." Tech. Memo 89-2. 
Center for Research in Water Resources, Univ. of Texas at Austin, Austin, Tex. 

Bao, Y. X., and Mays, L. W. (1994). "Optimization of freshwater inflows to Lavaca- 
Tres Palacios, Texas, estuary." J. Water Resour. Plng. and Mgmt., ASCE, 120(2), 
218-236. 

Brandes, R. J., Johnson, A. E., Icemena, K. R., and Masch, F. D. (1975). "Com- 
puter program documentation for the dynamic estuary model with application to 
Sabine Lake estuarine system." Final Rep. to Texas Water Development Board, 
Water Resources Engineers, Inc., Austin, Tex. 

Froehich, D. C. (1989). "Finite element surface-water modeling system: two-di- 
mensional flow in a horizontal plane users manual." Tech. Rep. FHWA-RD-88- 
177, Federal Highway Administration Office of Research, Development, and Tech- 
nology, McClean, Va. 

"Hydrological and biological studies of the Colorado River delta, Texas." (1978). 
Rep. LP-79, Texas Department of Water Resources, Austin, Tex. 

Lasdon, L. S., and Waren, A. D. (1989). GRG2 user's guide. Dept. of General 
Business, Univ. of Texas at Austin, Austin, Tex. 

"Lavaca-Tres Palacios estuary: a study of the influence of freshwater flows." (1980). 
Rep. LP-106, Texas Department of Water Resources, Austin, Tex. 

Leendertse, J. J. (1967a). Aspects of a computational model for long-period water 
wave propagation. The Rand Corp., Santa Monica, Calif. 

Leendertse, J. J. (1967b). "Aspects of computational model for well-mixed estuaries 
and coastal seas." RM 5294-PR, The Rand Corp., Santa Monica, Calif. 

Martin, Q. W. (1987). "Estimating freshwater inflow needs for Texas estuaries by 
mathematical programming." Water Resour. Res., 23(2), 230-238. 

"Mathematical simulation capabilities in water resource systems analysis." (1979). 
Rep. LP-16, Texas Department of Water Resources, Austin, Tex. 

Matsumoto, J. (1992). User's manual for the Texas Water Development Board's 
circulation and salinity model: TXBLEND." Texas Water Development Board, 
Austin, Tex. 

Tung, Y. K., Bao, Y. X., Mays, L. W., and Ward, G. (1990). "Optimization of 
freshwater inflow to estuaries." J. Water Resour. Ping. and Mgmt., 116(4). 

Lynch, D. R., and Gray, W. G. (1979). "A wave equation model for finite element 
tidal computations." Comp. and Fluids, 7,207-228. 

Ward, G. H., and Espey, W. H. (1971). "Estuarine modeling: an assesment." 
EPA16070 DZV, U.S. Government Printing Office, Washington, D.C. 

APPENDIX II1. NOTATION 

The following symbols are used in this paper: 

ci = salinity violation for ith constraint;  
d = water  depth (d = h - z); 

Ex, Ey = horizontal  dispersion coefficients in the x- and y-directions;  
e = evaporat ion rate;  
f = bot tom friction term from Manning equation;  

G = general  salinity constraint;  
g = gravitational acceleration;  

Ilk = fishery harvest  for species k; 
h = water  surface elevation; 
K = wind stress coefficient; 
L = Lagrangian function; 

Pk = prede termined  probabi l i ty  requirement  for k fish species; 
Q = freshwater inflow [cfs or  acre-ft (1 cfs = 0.0283 m3/s; 1 acre-ft 

= 1,233.5 m3)]; 
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QS 

QSDj 

qx, qy 
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S 
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U , V  

Vw 
Xw 

Yw 

x,  y 
Z 

0 
Ix 

1) 

= seasonal flow ( independent  variable in fishery harvest  regression 
equations);  

= matrix of the observed data  of seasonal  freshwater  inflow for the 
fish harvest  regression equations;  

= depth-averaged flow components  in the x- and y-directions per  
unit width; 

= flow per  unit width (q = X/~2x 2 + qy2); 

= rainfall  intensity;  
= upper  bound of salinity; 
= lower bound of salinity; 
= vertically averaged salinity (ppt);  
= time; 
-- net velocities over  tidal cycle; 
= wind velocity at 10 m above water  surface; 
= wind stress per  unit densi ty of water  in x-direct ion (Xw = K V  2 

cos 0); 
= wind stress per  unit densi ty of  water  in y-direct ion (Yw = K V  2 

sin 0); 
= horizontal  Cartesian coordinates;  
= bot tom elevation; 
= coefficient vector  for fishery harvest  regression equation;  
= wind surface direction with respect  to the x-axis; 
-- Lagrange mult ipl ier  vector;  
= Lagrangian mult ipl ier  for ith salinity constraint;  
= penal ty weight vector;  
= penal ty  weight for ith salinity constraint;  
= lat i tude;  
= angular rotat ion of the earth;  and 
=- Coriolis pa ramete r  (12 = 20~ sin qb). 
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